CKD AND OSTEOPOROSIS

DAVID GOLDSMITH, LONDON, UK

LONDON 2019

Metabolic Bone Clinic Referral

- 75 year old female
- Referred to Metabolic Bone Clinic 2011
- Multiple fracture risk factors
 - Age
 - Early menopause
 - Long-term prednisolone use
 - Low calcium intake
 - CKD stage 4

Multiple Co-Morbidities

- ESRF from MCGN
- Renal transplant in 1993
 eGFR 20
- Diabetes Mellitus
- Previous TB
- Hypertension
- Hyperlipidaemia
- Hypovitaminosis D
 - Treated 40,000IU/month for 6 months

Fracture Risk and BMD Loss

FRAX Assessment Of Fracture Risk

Risk Type	10 Year Risk
Major Fracture	28%
Hip Fracture	12%

High Risk Of Fragility Fracture

Bone Profile

Despite vitamin D replacement PTH still high Likely both osteoporosis and CKD metabolic bone disease

What would you do?

- **1.** Prescribe active vitamin D
 - Lowering PTH may cause adynamic bone disease
- 2. Prescribe bisphosphonatea) Would you use normal or half-doseb) For what duration
- **3**. Perform a bone biopsy
 - Exclude adynamic bone disease (unlikely as PTH high)
- 4. Measure bone specific ALP
 - If high adynamic bone disease unlikely

What we did

- **1.** Optimised calcium status
 - Adcal D3 one tablet daily (CV risk)
- 2. Risedronate 35mg once fortnightly
 - As PTH >150 adynamic bone disease unlikely
 - Bone biopsy best practice
- 3. Discuss with renal physicians regarding active vitamin D
- 4. Follow-up 3 months

Metabolic Bone Clinic Referral

- 66 year old female
- Referred metabolic bone clinic 2009
- Renal History
 - ESRF
 - Anti-GBM + ANCA positive cresenteric glomerulonephritis
 - Renal transplant 2003
 - Stable eGFR 32ml/min
- During ESRF had hyperparathyroidism
 → parathyroidectomy

Fragility Fracture Risks

- Early menopause
- Post-transplant steroids
- Loss of vertebral body height
- BMD evidence of osteoporosis

Osteoporosis History

Osteoporosis diagnosed post-transplant 2003

- -T-score hip -3
- 2005
 - -worsening BMD: T-score hip -4.4
 - -alendronate started
- 2007
 - -11% improvement in BMD
 - -T-score hip -3.9
- When seen as new patient in 2009 BMD improved and stable
 - —Continued alphacalcidol + alendronic acid

Seen January 2010- Deterioration

- Further fractures
 - Metatarsal stress and rib fractures
- Falling BMD
 - -4.1% fall over 12 months
- T score
 - -Spine -4.4
 - -Hip -2.6

Summary- 4 years alendronate therapy, previous parathyroidectomy, worsening BMD

Fracture Risk And Bone Mineral Density Change

What would you do?

- 1. Stop alendronic acid
- 2. Perform bone biopsy
 - Exclude adynamic bone disease
- 3. What other treatments would you consider

What we did

- 1. Stopped alendronic acid
- 2. Inititated teriparatide

Isotope Bone Imaging Response

Pre-Teriparatide Anterior Posterior

Post-Teriparatide

BMD and Calcium Response

BMD Response

- •Increase over 6 months
- •10% at lumbar spine

Hypercalcaemia with teriparatide initiation
Responded to alphacalcidol reduction (1mcg to 0.5mcg)

Siamese Twins – CKD, osteoporosis

- CKD and osteoporosis get much more common with advancing age
 - So "co-localisation" is inevitable
- BUT, CKD has its own important set of skeletal consequences
 - How do these interact with, affect, alter, osteoporosis
 - Diagnostically ?
 - Therapeutically ?

Are we singing from the same hymnsheet?

• Rheumatology/Osteoporosis/Care of the Elderly

- Nephrologists
 - CKD, Dialysis, Transplantation

'...a systemic skeletal disease characterised by low bone mass and microarchitectural deterioration of bone tissue, with consequent increase in bone fragility and susceptibility to fracture'

Bone disorders in CKD

- Systemic dysregulation of bone and mineral metabolism, defined as CKD-MBD (includes biochemical abnormalities and calcification in vascular and soft tissues)
- Renal osteodystrophy : abnormalities in bone histomorphometry that develop as a consequence of CKD-MBD

Prevalence of spectrum of bone disorder in CKD-MBD

<i>Table 1.</i> Bone biopsies results in predialysis patients ^a									
Reference	No. of Patients	SHIPTH (%)	MHPTH (%)	OM (%)	MBD (%)	AMBD (%)	ABD (%)	Normal Bone (%)	Treatment
Eastwood et al., 1982 (23)	38	86.8		44.7 ^b			NA	10.2	No vitamin D
Mora Palma et al., 1983 (24)	327	54.0		34.0			NA	12.0	NA
Dahl et al., 1988 (25)	60	80.0		1.6			NA	11.0	NA
Hutchinson et al., 1993 (26)	30	27.0	23.0	7.0	13.0		27.0		$CaCO_3$ 2 to 10 g/d
Hernandez et al., 1994 (27)	92	57.4	23.0	11.0					No vitamin D CaCO3
Torres et al., 1995 (28)	38	30.0	10.0	2.0		10.0	48.0		No vitamin D CaCO₃
Hamdy et al., 1995 (15)	87 placebo	71.0		1.0	20.0		3.0		5
	89 vitamin D	75.0		0.0	18.0		7.0		$CaCO_3$ 3 to 8 g/d
Coen et al., 1996 (29)	76	2.7		9.0	34.2	28.0	11.8	13.0	No vitamin D No CaCO3
Shin et al., 1999 (30)	58	8.6	36.2	10.0	12.0		24.1	8.6	NA
Ballanti et al., 2001 (5)	27	8.0		11.0	34.0	26.0	26.0		No vitamin D No CaCO ₃
Spasovski et al., 2003 (31)	84	9.0		12.0		18.0	23.0	38.0	CaCO ₃ 0.5 g/d No vitamin D

^aABD, adynamic bone disease; AMBD, advanced mixed bone disease; MBD, mixed bone disease; MHPTH, mild hyperparathyroidism; NA, not available; OM, osteomalacia; SHPTH, severe hyperparathyroidism. ^bPercentage of patients with SHPTH also had OM.

Osteoporosis and CKD-MBD

NHANES III: Renal Compromise & Osteoporosis: GFR <35 ml/min)

Age Group	Prevalence
20-29	0.0%
30-39	0.0%
40-49	0.0%
50-59	0.0%
60-69	7.3%
70-79	21.3%
80+	53.9%

Klawansky et al., Osteoporos Int 2003, 14;7:570-577

60% of women with osteoporosis had CKD stage 3 and 23% had CKD stage 4

Fracture risk in CKD

Association betweeen hip fracture (NHANES III) Participants (Nickolas et al , JASN 2006; 17: 3223-3232

Overview

Overview

Osteoporosis in CKD:

- Epidemiology
- Pathophysiology
- Risk factors
 - Clinical risk factors
 - Low Bone Mineral Density
 - Bone biomarkers ?
 - Renal osteodystrophy ?

Who to treat? How to treat?

Epidemiology

Moe SM, Nickolas TL. Clin J Am Soc Nephrol 2016;11:1929-31.

Jadoul M. et al. Kidney Int. 2006

Pathophysiology

But maybe in reality....

Double jeapardy

Overview

Clinical Risk Factors

BMD

Bone mineral density

Fracture-free survival (%) in 518 de novo renal transplant patients, categorised according to DXA Tscore categories at the time of transplantation

Bone Turnover

Risk factors

Bone turnover markers

Clinical utility

•

- Diagnosis.....
 Poor, especially on an individual level
- Prognostication
 - Fractures..... Variable, but overall poor
- Treatment guidance and monitoring......Moderate/good

Evenepoel P, et al. Curr Osteoporos Res 2017;15:178-86.

Performance

Cummings et al. NEJM 2009

Evenepoel et al. NDT 2019

Bone Histomorphometry

	Risk factors				
Renal osteodystrophy	Portugal ¹	São Paulo ²	KDIGO consortium ³	Consortium ⁴	Leuven-Antwerp ⁵
N	68	97	492	630	36
Age (years)	54.5	49.5 ± 13.1	49.5 ± 15.1	55.0 ± 1.0	55.5 ± 12.3
White race (%)	97	58	94	86	100
Male gender (%)	59	65	57	52	73
Dialysis vintage (yrs)	2	3.1± 2.3	4.7 ± 3.7	4.3 ± 0.2	2.2 (1.2–2.9)
Ca (mg/dL)	9.7	-	9.5 ± 1.0	9.2	9.2 ± 0.8
Phos (mg/dL)	5.8	5.4 ± 1.5	5.8 ± 1.9	5.3	4.44 ± 1.13
PTH × UNL	2.0	5.3	8.3	4.2	4.8
Turnover leira A, et al. J Am Soc Nephrol 19:405–12; 2. Barrelo FC, et al. Kidney Int 3:771–7; 3. Sprague SM, et al. Am J Kidney 16:67:559–66; 4. Malluche HH, et al. J Bone tes 2011;26:1368–76; 5. Evenepoel P, et ev Int 2017; 91:469–76	375 635 E.ov. ENormal E.High	57% 50% 58 Eow Normal E High	High 12% Nor 24% S9% S9%	NorHigh mail 4% 20% Low 75%	53% 445% E Low = Normal = High

But, caveat....

Treatment paradigm - 1

Treatment paradigm 1

Who to treat?						
BMD	centric approach: who?	Guidance from the general po	opulation:			
	USPSTF (US Preventive Service Task Force)	NOF (National Osteoporosis Foundation)	ISCD (International Society for Clinical Densitometry)			
Female	>65 years: all <65 years: postmenopausal at increased risk, as determined by a formal clinical risk assessment tool	>65 years: all <65 years: postmenopausal, based on risk profile (including history of fracture as adult)	>65 years: all <65 years: if risk factors of low bone mass			
Male	Current evidence is insufficient	>70 years: all 50-69 years: based on risk profile	>70 years: all <70 years: if risk factor of low bone mass			
reference	JAMA 2018	Osteop Int 2014	http:www//iscd.org/ (2015)			

Pragmatism

Who to treat?

BMD centric approach: who?

A pragmatic approach in patients with CKD:

	CKD 1-3 (+/- transplant)	CKD 4-5D (+/- transplant)
Female	As in the general population	postmenopausal
Male	As in the general population	>50 yrs

- Exclude patients with limited life expectancy
- Prioritise patients on renal transplant waiting list

Dexa distribution

Testing – who, where, when

Who to treat?

BMD centric approach

TESTING FOR CKD-MBD

New 3.2.1: In patients with CKD G3a-G5D with evidence of CKD-MBD and/or risk factors for osteoporosis, we suggest bone mineral density (BMD) testing to assess fracture risk if results will impact treatment decisions (2B).

Old 3.2.2: In patients with CKD G3a–G5D with evidence of CKD-MBD, we suggest that BMD testing not be performed routinely, because BMD does not predict fracture risk as it does in the general population, and BMD does not predict the type of renal osteodystrophy (*2B*).

Kidney Disease: Improving Global Outcomes

KDIGO recommendations on CKD-MBD Kidney Int 2017

DXA testing:

-Who to test?

-Which skeletal site?

-Which intervention threshold?

Biases and error

Treatment Paradigm - 2

Renal relative risk

Clinical risk factor centric approach

RA • Hypogonadism IBD Immobility Organ transplantation DM Thyroid disorders . COPD

CKD

Kanis et al. Osteop Int 2018

CRFs

https://www.sheffield.ac.uk/FRAX/tool.aspx?country=18

Too high, too low...

Naylor et al. CJASN 2015

Whitlock et al. Kidney Int 2019

Composite risk scoring

	INGARLAN CIETY OF PHROLOGY			Wh	o to	o tre	at?
Clinical risk factors			VHO Fracture Risk Assessment Tool	 fraction rem interstand sam 	ture pro nain to b erventior ne as in t	babilities i e adjusted n threshold the genera	n CKD (upwards) ds are the I population
Fracture probability	Weight Conversion:	Your Country : UK Name / ID : Questionnaire:	Patient About the risk factors () 10. Secondary osteoporosis ON0 Yes 11. Alcohol 3 more units per day ON0 Yes	Age range (years)	Intervention threshold	Lower assessment threshold	Upper assessment threshold
Prigh Intermediate Low	1 pound = 0.453592 kg	1. Age (between 40-90 years) or Date of birth Age: Date of birth:	12. Femoral neck BMD	40-44	5.2	2.3	62
		2 Say Mate Offemale	1-score2:5	45-49	5.4	2.4	6.5
BMD	Height Conversion:	3. Weight (kg) 65	Clear Calculate	50-54	6.3	2.9	7.6
	Convert	4. Height (cm)	24	55-59	7.6	3.6	9.1
Reassess	1 inch = 2.54 cm	S. Previous tracture No OYes		60-64	9.9	4.9	11.9
		6. Parent fractured hip ONo Yes	The ten year probability of fracture (%)	65-69	13.4	6.9	10.1
		7. Current smoking ONo Yes	Major osteoporotic fracture 23.9	70-74	17.6	9.7	21.5
Low		8. Olucocorticoids ONo OYes		75-79	23.0	13.7	27.6
		9. Rneumatoid arthrets ONo OYes	Hip fracture: 8.0 1	80-84	29.1	18.7	34.9
Tang	L			85-89	31.8	20.9	38.2
				90-94	31.7	20.8	38.0
				95-99	32.2	21.1	38.6
				100+	32.5	21.3	39.0

How to treat – non-drug

How to treat?

Non-pharmacological management of osteoporosis

- Fall prevention
- Lifestyle modification
- Nutrition
 - Vitamin D, RNI 800 U/D
 - Calcium, RNI 800-1000 mg/d

- Regional variability
- Lower intakes in CKD

Questionnaires to estimate intake

Active Rx - primum non nocere

Pharmacological management of osteoporosis

Annals of Internal Medicine

REVIEW

CKD 1-3: as in the general population

CKD 4–5D: absence of good evidence

Benefits and Harms of Osteoporosis Medications in Patients With Chronic Kidney Disease

A Systematic Review and Meta-analysis

Lisa M. Wilson, ScM; Casey M. Rebholz, PhD, MPH, MS; Ermias Jirru, MD, MPH; Marisa Chi Liu, MD, MPH; Allen Zhang, BS; Jessica Gayleard, BS; Yue Chu, MSPH; and Karen A. Robinson, PhD

Background: Complications of chronic kidney disease (CKD) include weak bones and increased fracture risk.

Purpose: To review the benefits and harms of osteoporosis medications (bisphosphonates, teriparatide, raloxifene, and denosumab) compared with placebo, usual care, or active control in terms of bone mineral density (BMD), fractures, and safety in patients with CKD.

Data Sources: PubMed and the Cochrane Central Register of Controlled Trials from December 2006 through December 2016.

Study Selection: Paired reviewers independently screened abstracts and full-text articles for English-language, randomized, controlled trials that had at least 6 months of follow-up; evaluated osteoporosis medications among patients with CKD; and reported on BMD, fractures, or safety (mortality and adverse events).

Data Extraction: Two reviewers serially abstracted data and independently assessed risk of bias and graded the strength of evidence (SOE).

Data Synthesis: There were 13 trials (n = 9850) that included kidney transplant recipients (6 trials), patients who had stage 3 to

5 CKD or were receiving dialysis (3 trials), or postmenopausal women with CKD (4 trials). Evidence showed that bisphosphonates may slow loss of BMD among transplant recipients (moderate SOE), but their effects on fractures and safety in transplant recipients and others with CKD are unclear. Raloxifene may prevent vertebral fractures but may not improve BMD (low SOE). Effects of teriparatide and denosumab on BMD and fractures are unclear (very low SOE), and these medications may increase risk for some safety outcomes.

Limitation: Unclear rigor of evidence, possible reporting biases, and scant evidence among patients with stage 3 to 5 CKD.

Conclusion: Effects of osteoporosis medications on BMD, frac ture risk, and safety among patients with CKD are not clearly established.

Primary Funding Source: Kidney Disease: Improving Global Outcomes.

Ann Intern Med. doi:10.7326/M16-2752 For author affiliations, see end of text. This article was published at Annals.org on 11 April 2017.

Annals.org

Treatment - drugs

Pharmacological management of osteoporosis

Annals of Internal Medicine

REVIEW

CKD 1-3: as in the general population

CKD 4-5D: absence of good evidence

Benefits and Harms of Osteoporosis Medications in Patients With Chronic Kidney Disease

A Systematic Review and Meta-analysis

Lisa M. Wilson, ScM; Casey M. Rebholz, PhD, MPH, MS; Ermias Jirru, MD, MPH; Marisa Chi Liu, MD, MPH; Allen Zhang, BS; Jessica Gayleard, BS; Yue Chu, MSPH; and Karen A. Robinson, PhD

Background: Complications of chronic kidney disease (CKD) include weak bones and increased fracture risk.

Purpose: To review the benefits and harms of osteoporosis medications (bisphosphonates, teriparatide, raloxifene, and denosumab) compared with placebo, usual care, or active control in terms of bone mineral density (BMD), fractures, and safety in patients with CKD.

Data Sources: PubMed and the Cochrane Central Register of Controlled Trials from December 2006 through December 2016.

Study Selection: Paired reviewers independently screened abstracts and full-text articles for English-language, randomized, controlled trials that had at least 6 months of follow-up; evaluated osteoporosis medications among patients with CKD; and reported on BMD, fractures, or safety (mortality and adverse events).

Data Extraction: Two reviewers serially abstracted data and independently assessed risk of bias and graded the strength of evidence (SOE).

Data Synthesis: There were 13 trials (*n* = 9850) that included kidney transplant recipients (6 trials), patients who had stage 3 to

5 CKD or were receiving dialysis (3 trials), or postmenopausal women with CKD (4 trials). Evidence showed that bisphosphonates may slow loss of BMD among transplant recipients (moderate SOE), but their effects on fractures and safety in transplant recipients and others with CKD are unclear, Raloxifene may prevent vertebral fractures but may not improve BMD (low SOE). Effects of teriparatide and denosumab on BMD and fractures are unclear (very low SOE), and these medications may increase risk for some safety outcomes.

Limitation: Unclear rigor of evidence, possible reporting biases, and scant evidence among patients with stage 3 to 5 CKD.

Conclusion: Effects of osteoporosis medications on BMD, frac ture risk, and safety among patients with CKD are not clearly established.

Primary Funding Source: Kidney Disease: Improving Global Outcomes.

Ann Intern Med. doi:10.7326/M16-2752 Annals.org For author affiliations, see end of text. This article was published at Annals.org on 11 April 2017.

Treatment – drugs

Pharmacological management of osteoporosis: antiresorptive agents

Advanced CKD		Bisphosphonates	Denosumab	
Efficacy		Evidence from post-hoc analyses of large registration trials do suggest equal ef antiresorptive agents in patients with (advanced) CKD* as in the general popul		
Safety (concerns)	Metabolic	Limited risk of hypocalcemia	Substantial risk of hypocalcemia	
Skeletal		bone remodeling inhibition	Bone remodeling inhibition. However, steady BMD gains are observed during prolonged remodelling inhibition in GP, while bone strength is preserved	
	Vascular	No evidence for acce	lerated vascular calcification	
	Renal	Accounting for some precautions, renal risks of BPs are minimal	No renal risks	

Treatment in dialysis patients

Denosumab 60 mg sc q 6M

Alendronate 900 mcg iv q 4 wk

Iseri et al. JBMR 2019

Newer drug options (?)

Evidence for newer drugs

Pharmacological managment of osteoporosis: anabolic agents

Advanced CKD PTH analogs		PTH analogs	Romomosumab		
Efficacy		Post-hoc analysis and small pilot studies show promising results (BMD and biomarker outcomes only) in patients with advanced CKD	No data		
Safety (concerns)	Metabolic	Limited risk of hypercalemia	hypocalcemia		
	Skeletal	osteosarcoma			
	Vascular	Transient hypotension	More cardiovascular adverse events (odds ratio [OR], 1.31 [0.85 to 2.00]) in postmenopausal women with osteoporosis given 12 months of romosozumab followed by 12 months of alendronate versus 24 continuous months of alendronate		

Synthesing some themes

Putting it all together (?)

Osteoporosis in CKDa diagnostic and therapeutic challenge on the move

- <u>Acknowledge</u> that osteoporosis in CKD is a composite of primary, CKD-related and drug-induced osteoporosis
- <u>Identify</u> patients at risk by integrating clinical risk factors and BMD
- <u>Adopt a pragmatic therapeutic approach awaiting evidence</u> from randomised controlled trials. Bone histomorphometry (and biomarkers) may prove helpful in decision making but are not obligatory.
- Obtain informed consent (prior to off-label use)